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Abstract

A generic, fully discrete adjoint method for pricing and computing risk sensitivities of
path-dependent contracts with both scheduled and stochastic payments in one-factor models
is presented. Between payment dates the contract value is advanced in the diffusive state by
a Theta-scheme. Path dependence is represented by a static coordinate (a half state variable)
that is frozen between dates and updated only at payment times, so one tridiagonal solve
per static level suffices and the PDE state dimension does not increase. Each payment date
is handled by an affine update that injects cash, applies a nodewise survival/scale factor,
and assembles the continuation value by interpolating across static-level rows according to
an updated level.

Differentiating both the Theta-scheme and the affine payment update yields an adjoint
sweep in which auxiliary vectors satisfy a transpose recurrence; this cancels explicit state
variations and reduces the total gradient to a sum of local terms stored during pricing
(step matrices, driver values and derivatives, and interpolation indices and weights). All
Greeks with respect to all model parameters are obtained in a single adjoint pass—mno
bump-and-rerun.

The framework is applied to a callable mortgage-backed bond with scheduled amortisation
and state-dependent prepayment. Adjoint bucketed-volatility vegas and the mean-reversion
sensitivity match central finite differences to machine precision while producing the full
gradient set in essentially one pricing-like run, delivering a measured speed-up of about 7.5x.
The approach is storage-local, exploits tridiagonal sparsity, and is directly deployable in
production risk engines across one-factor models.

1 Introduction

We present a general adjoint method for pricing and for computing risk sensitivities of path-
dependent contracts with scheduled payment events between ¢ > 0 and maturity. Between
payment dates the contract value satisfies a one-factor parabolic partial differential equation
(PDE), which we advance in time using a ©—scheme. At payment dates, we apply a contract-
specific update that (i) injects any cashflow due at that date, (ii) applies the product’s continuation
rule for what value survives past that date, and (iii) redistributes that surviving continuation
value across the existing static-coordinate levels to reflect the updated balance (for example,
after amortisation or prepayment).

Path dependence is handled by introducing a second state coordinate that is not diffusive
between payment dates but is updated at payment dates. We call this coordinate a static
coordinate or half state variable: it stays constant between payment dates, so it does not appear
as a PDE dimension, but it is still carried forward in time and still matters for valuation. Typical
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examples include an outstanding balance, a pool factor, or remaining notional. We discretise this
static coordinate into levels {p;}, and for each level we evolve one one-dimensional PDE in the
diffusive state x. At each payment date we then redistribute value between these discrete levels
according to the product’s update rule. In this way we reproduce the effect of a two-dimensional
state (z,p) without solving a two-dimensional PDE: we solve one one-dimensional PDE per
static level, and only couple those levels at the discrete payment dates.

The computation is organised into two passes. In the first (pricing) pass we roll values
backward in calendar time. Between payment dates we solve, for each static level, the same
one-dimensional ©®—scheme PDE in the diffusive variable . At each payment date we then apply
an affine jump: a linear map that, for each static level, (i) adds an explicit term defined at that
date, and (ii) forms the value that continues past the date by taking a linear combination of
values from one or more static levels and multiplying it by a nodewise scaling factor. All objects
required by the adjoint — local system matrices, interpolation weights, and any state-dependent
drivers — are stored during this pricing pass.

In the second (adjoint) pass we compute all parameter sensitivities in a single sweep. We
introduce an auxiliary sequence of adjoint vectors and propagate them through the transpose
of the ©®—scheme between payment dates and through the transpose of the affine jump at each
payment date. This propagation lets us express the derivative of the final price with respect to
any model parameter as a sum of local terms that were already stored during pricing, multiplied
by those adjoint vectors. No reruns per parameter are required: all Greeks with respect to all
model parameters are obtained from one adjoint sweep.

This construction extends the adjoint finite-difference PDE machinery of Capriotti et al.
(2015) in two ways. First, it supports path-dependent contracts by introducing a static coordinate
(half state variable) that is carried as a label between payment dates and is only updated at
payment dates, rather than being added as a full diffusive dimension. Second, it generalises
cashflow handling: intermediate payments are applied via an explicit affine update (cash insertion
plus survival/relabeling of the continuation), while the maturity payoff is imposed as a terminal
condition with no continuation. Both extensions are achieved without increasing the PDE state
dimension: between payment dates we still solve a one-dimensional PDE in the diffusive state
x, one row per static level, and coupling across static levels appears only at the discrete jump
dates.

The paper is organised as follows. Section 2 defines the ©®—scheme between payment dates,
introduces the static coordinate, and describes the affine jump at each payment date, including
how value can be reassigned across static-coordinate levels. Section 3 differentiates the ©—scheme
and derives its discrete adjoint. Section 4 differentiates the affine jump, shows how jump and
PDE contributions enter the total gradient, and describes how the adjoint propagates across a
payment date. Section 5 shows how the general framework applies to a callable, path-dependent
fixed-income instrument by instantiating the abstract objects in Sections 2—4. Section 5 reports
numerical accuracy and runtime, and Section 6 concludes.

2 The ©-scheme and static coordinates
We work on a fixed sequence of payment dates

to<t1 <+ <twm,

indexed by m in increasing calendar time. Between two consecutive dates t,, and t,,11 we

assume that the contract value depends on two state variables:

o a diffusive state variable x that evolves stochastically under the risk—neutral measure, and

« a static coordinate (also called a half state variable) that is constant between ¢, and t,,4+1
but can change at t,, itself when the payment is applied.



The static coordinate captures the contract’s path dependence; in the callable mortgage-bond
use case this is the pool factor. Between payment dates it is carried as a label and does not
diffuse.

Dynamics and PDE

For the diffusive state z;' we assume a risk-neutral dynamics of the form
dzy = p(zg,t)dt + o(zy, t) dW, with discount (killing) rate p(z,1). (1)

Here p(x,t) is the drift of x; under the risk—neutral measure, and o(x,t) is the local volatility
(the instantaneous diffusion coefficient). Both may depend on the current state x and on time t.
The function p(z,t) is the instantaneous discount (or killing) rate used for valuation. We do not
assume a particular parametric model for u, o, or p; they may vary in both x and t.

By the Feynman—Kac representation, the discounted continuation value u(z,t) satisfies the
one-dimensional parabolic PDE

Ou(z,t) = L(t)u(x,t), L(t)u = 502(3:,15) Ozzt + p(x,t) Opu — p(z,t)u. (2)
The discount term —p(x,t)u in £(t) ensures that cashflows which occur at payment dates are
already valued at those dates, so there is no need to add further discounting inside the payment
update.

We discretise = on a spatial grid {z, }-; and sample u(z,t,,) on that grid. We denote this
sampled vector by u,, € RV at time t,,.

Let Aty = timy1 — tm. A single ©—scheme step on [t,,, ty,+1] is written in matrix form as
A vy = BOups, AU = T-O AL, L(tmy1),  BUY = I+(1-0) Aty L(tm), (3)

with © € [0, 1] (Crank-Nicolson corresponds to © = ). In backward induction, um+1 is known
and we solve .

To implement (3) we discretise the operator £(t) in space. On a uniform spatial grid with
spacing Az, we approximate spatial derivatives by

2Up + Up—1
Ax? ’

(Opu)p = Unt1 = Un—1

Un+1 —
8131’ n ~
(Ora) 2Ax

Let a, = %JQ(acn,t), b = p(xn,t), ¢n = p(zp,t). The resulting finite-difference operator is
tridiagonal:

(LM(t)v)n = an(t) vno1 + Balt) vn + 1 (t) vns1, (5)
where
an by, 2a,, an by,

an(t) = AzZ 2Az’ Bn(t) = — A2 ey Tn(t) = Ax? + AL

Replacing £ by L" in (3) produces the banded matrices Agﬂ ) and Bgn). For each interval
[tm, tm+1] (and for each substep inside that interval, if we substep in time), we build the lower,
main, and upper diagonals of Agn) and Bé)m) and solve the tridiagonal system (4).

At the spatial boundaries we impose a zero-gradient (Neumann-type) closure using linear

extrapolation,

u(z) = 2u(xy) — u(x2), u(zn-1) = 2u(zy_2) —u(xN_3), (6)

'Tn implementations x is often a transformed state (log/shift/monotone map) to improve stability or boundary
placement. The coefficients u, o and the operator £(t) are written in the z—coordinate.



which is second-order accurate. In practice we either (a) enforce (6) by explicitly projecting the
boundary nodes after each solve, or (b) embed these relations directly into the first and last rows

of Agn) and B((am) so that the boundary conditions are already built into the linear systems. These
finite-difference choices (grid construction, substepping for stability, and boundary treatment by
projection or embedded rows) follow applied practice in production PDE solvers; see Andreasen
(2023a,b) for further discussion.

Static coordinate between payments

The contract is path dependent because it keeps track of a second state coordinate that carries
path information forward in time. This quantity is, in general, state dependent—for example
remaining balance, outstanding notional, or pool factor (for callable mortgage bonds, the pool
factor). The key modelling assumption is that this static coordinate is constant between payment
dates and only changes at payment dates. This freeze-and-update treatment is used in Rom
(2025) to value path-dependent callable mortgage bonds.

We handle this static coordinate without increasing the PDE dimension. Suppose we choose
a finite set of discrete levels {p; fi_ol for this coordinate. For each level p; and each payment
date t,,, we store one solution vector

Um i € RN:

which represents the contract value on the xz—grid at time ¢,, assuming the static coordinate is
equal to p;. Stacking these P rows at time t,, gives a P x N array, which we denote by U,,; the
ith row of Uy, is U ;-

Between t,,+1 and t,,, each row evolves independently in x using the same ©-scheme in
(3)-(4):

Ag”’ Ui = Bém) U414+

The static coordinate p; is simply carried along as a label; it does not appear as a PDE dimension.
At this stage, between two payment dates, there is no interaction between different rows.
The only point where rows interact is precisely at a payment date, as described below.

Payment update at a payment date

After rolling back from t,,1 to t,, with the ©—scheme for each static level p;, we apply the
payment update at t,,, (we show the affine version in (7)). The relation between C;(s), Si(s),
and Viext i(s) need not be affine; we present the affine case because it covers many contracts.
Formally, let uj € RY denote the row associated with static level p; before applying the
payment at t,,,2, and let u; € RY denote the row associated with static level p; after the payment
at t,,,. We assume
ui = Cils) + Sils) Vaerta(s): (7)

where C;(s) is the cashflow vector paid at t,,, S;(s) is a nodewise multiplicative survival or scale
factor, and Vjext,i(s) is the continuation value that survives past t,, for that row. All three
depend on a scalar driver

s = s(z,t),

evaluated at some representative time t* € [ty,, tm+1] (for example t* = (1 — O)ty, + Otpyy1).
The driver s depends on the diffusive state x and time t*, but, at a given spatial node x,,, it does
not depend on which static level p; we are considering. We store s and its parameter sensitivities
during the rollback on (¢, tym+t1).

2Throughout, “pre-payment” (u') and “post-payment” (u~) are defined with respect to the backward pricing
sweep: ut is the grid just before the update at t,, (after rolling back from tm41 to tm), and v~ is the grid
immediately after applying the payment at the same t,,. In the adjoint sweep, ¥~ is attached to ™ and is pulled

back through the payment to give ™.



The remaining ingredient in (7) is Viext,i(s). This quantity represents “what value continues
after t,,,” and it also captures any jump in the static coordinate. We model the jump rule
explicitly as a deterministic update map

Qi(s) = gi(s),

evaluated node by node in x. For each static level p;, the function g; encodes the contract’s rule
for how the static coordinate should change at t,,: starting the period at level p;, and given the
realised driver s, the static coordinate immediately after ¢,, is declared to be Q;(s). We refer to
Qi(s) as the updated static level associated with row i. We assume g¢; depends on s (and on any
fixed contractual parameters at t,,), but not on the continuation values uj themselves.

Because @;(s) will not in general coincide with one of the discrete grid levels {p;}, we realise
this jump in the static coordinate by interpolation across neighbouring rows of U,},. Suppose at
a given spatial node z,, the updated level Q;(s), lies between two neighbouring grid levels p;,
and p;, (so pi;, < Qi(s)n < pip). We define the nth component of the surviving continuation
value by

(Vnext,i(s))n = (1 - wi,n) (uj_L)n + win (u:;?)n’ Win = mv 0< Wi n <1 (8)
Pir — Pig
In other words, for each spatial node x,, we: 1. evaluate the driver s,, = s(z,,t*), 2. apply the
contractual update rule Q;(s), = gi(sn) to get the post-payment static level, 3. find the two
bracketing static levels p;, and p;,, and 4. interpolate linearly between the corresponding entries
of qu and u;;.

Stacking these nodewise definitions over n gives the full vector Viext i(s) € RN If, for a given
row ¢, the contract never changes the static level at t,,, then g; simply returns p; at every node,
80 Qi(S)n = pi, we have i;, = ig = 4, and the formula above reduces to Viext,i(s) = u:r

Equation (7), together with the interpolation rule just described, is the affine jump used
later for the adjoint analysis in Section 4, where we denote by ¢, and Tﬁ_ the adjoint vectors
attached to u; and u;, respectively.

Price extraction and terminal condition

After we have marched all the way back to the valuation time ty, we evaluate the contract price
from the stored grid. At tq we have Uy € RP*N | which is the full grid across static levels and
across the z—grid. The price is extracted by applying a bilinear functional,

P = Uy = wy Uyw,, (9)

where w), € R? and w, € RY are interpolation weight vectors.

The vector wy, selects the contract’s initial level of the static coordinate. If the initial level
p* lies exactly on one of the grid points p;, then w), is the unit vector with a 1 at index 7. If p*
lies between two neighbouring grid levels p;, and p;,, we take linear interpolation weights

* *

wI(fL) _ Pig — P wl(fR) b —DPig ’
Pip — Pig,

Pip — Pig, ’ B
and set the corresponding entries of w,, to these two values, with all other entries zero.

Similarly, w, selects the contract’s initial value «* of the diffusive state on the spatial grid
{x,}. If 2* lies between z,,, and x,, we define

*
'u)(nL) . CCnR — X

T
Tn

r — ¥ng LTng = Tng,

and set those two components of w, accordingly (or take a unit vector if z* falls exactly on a
grid node).



In other words, w, and w, simply perform linear interpolation in the static coordinate and
in z. The bilinear form w; Upw, extracts the model value of the contract at its actual initial
state.

At maturity tjs there is no continuation beyond that date. We therefore set the final grid
Uy directly from the contractual payoft:

Unr = payoff at maturity, (10)

which is typically constant across spatial nodes if the final payoff is deterministic. This Uy,
serves as the starting point for the backward roll.

3 Differentiating the ©—scheme

We now derive the contribution of the between-payment ©—scheme to the gradient of the final
price with respect to a generic model parameter §. We work on a single interval [t,,, t;+1] and
then sum over all intervals and substeps. Throughout this section we fix one static level p;, so
um € RY denotes the solution vector on the z—grid at time t,, for that specific p;. Between
payment dates each static level evolves independently (Section 2), so we can treat each row
separately here.

For notational clarity, write the ©—scheme step for that row as

AT (O) wn(0) = B (6) 11 (6), (11)

where A™ and B(™) are the step matrices in (3) after spatial discretisation (including boundary
treatment), and w,, is the discrete solution vector at ¢,,. Here, and in the remainder of this
section, we index m = 0,..., M — 1 in increasing calendar time ty < t; < --- < tpr. In the
actual pricing pass we solve (11) backward in time from ¢,,41 to ¢,,. In the adjoint sweep we
will traverse these steps in forward calendar order.

Our goal is to compute the sensitivity of the final price P with respect to a model parameter
6. Since P = ®(up), where ug is the solution vector on the z—grid at ¢y for the static level under
consideration, we may write

oP 0% dug
20  Oug 00
The first factor 0®/0ug is known directly from (9). The hard part is dug/06.

Intuitively, dug/00 is obtained by accumulating the effect that € has on every single backward
time step of the ©-scheme: each step in (11) depends on # through its matrices A () and
B(m)(ﬁ), and differentiating those steps tells us how a change in 6 would perturb the solution at
that step. If we were to propagate all of those perturbations back to tg and add them up, we
would recover dug/00.

Doing that propagation explicitly for each model parameter would be expensive. As seen
from (14), computing Jpu,, requires solving an additional linear system at each time step, and
Opuy, must be carried all the way back to tg. If 6 is actually a vector of model parameters (for
example, one volatility per bucket), we would have to repeat this sensitivity solve separately for
each component. In other words, the cost would scale like bump-and-rerun: one full PDE-style
sweep per parameter.

To avoid this cost we introduce, for each t,,, auxiliary vectors v, € RY defined by the
transpose recurrence

0d

A(m)Tl/)m = B(m)Twmﬂ-la sz?"')M_]-v 1/}0 = 87
Uo

(12)

Here 19 = 0®/0ug follows from P = ®(ug). Concretely, with Uy € RP*N and P = prUgwI,
the derivative with respect to the row corresponding to p; is proportional to the z—interpolation



weights w,., which we use to seed g; the recurrence then yields 1, ..., in forward calendar
order. From (12) we also have the identity

wm—i-lA ¢ (13)

Differentiating (11) with respect to 6 gives
(B9 A™) wyy + A™ g, = (99B™) i1 + B™ Ogi 1. (14)
Left-multiply (14) by ¢}, and use (15) to replace 1, , ; A(™) by ] B(™):
¢;+1(39A(m)) U + 7/J7ILB(W) Og, = %TLH(@GB(W)) Um+1 + %TLHB(m) Ot 1- (15)

Now sum (17) over m = 0,..., M — 1, where each m represents an individual stored substep
(we may substep within a coupon period):

M-1 M-1
Z ererl(aHA(m))um + Z "‘/’;B(m) Opum

m=0 m=0
M-1 M-1
U100 B ™) w1 + Y U BU™ Opumsa. (16)
m=0 m=0

Bring all dpu terms to the left. We obtain

M-1 M-1
Z 1/’;“(‘903( ™) ) U1 — Z ¢m+1 89A ))
m=0 m=0

M-1 M-1
ST o B™ dgun — > i1 B™ Ogumi. (17)

The right-hand side of (19) has a telescoping structure. Writing it term by term,

M-1 M-1
> m B g, — > bty BU™ Ogtign 1 = [thg B dguo] — [1] B dpur]
m=0 m=0

+ [] BY 8pus] — [1og BWY dgus)
+ [ty B® puy] — [v04 BP dyus)
—+ ...

+ [Wd_1 BMY dguns 1] — [ BM Y dgupy].
All interior terms cancel. What remains is
g B dguo — 3, BY Y Gguny.

At maturity tp; the terminal vector uys for each static level is set directly from the contractual
payoff. In typical applications this payoff does not depend on the model dynamics parameters
(for example drift, volatility, or discounting buckets), so dpups = 0 and the last term vanishes. If
the terminal payoff itself depends on 6, an additional boundary term w&B (M=1) 9pups must be
included.

The remaining boundary term 1] B®) dpug is exactly the chain-rule quantity (0®/ Buo)T89u0 =
OP/00, because g = 0P /Jugy by construction. In other words, the telescoping argument has
expressed OP/00 entirely in terms of local stepwise quantities and the adjoint vectors.



We are left with the fully local expression

oP

M-1
9 o = 2 rora (@B tnr = 00 A™) ] (18)

where the sum runs over all stored substeps between payment dates, for the fixed static level under

consideration. This is the contribution of the between-payment PDE solves to the sensitivity of

the final price with respect to 6.

Operationally:

o Forward pass between payments: for each substep (for each static level p;), we store
U, Um+1, the bands of AM) and B and their parameter derivatives 9pA™), 9y B(™).
Boundary conditions are either embedded directly in those bands or applied afterwards via a
projection like (6), in which case we also store what is needed to replay the transpose of that
projection.

+ Reverse pass between payments: at £y we initialise 99 from the price extraction functional
(9) (this defines the contribution of each static level to the final price). We then run the adjoint
forward in calendar time from t( to ¢y, solving the transpose systems A T4, = B Tqp )
to obtain 1,41 from 1y, and on the way we accumulate the contribution (20). If the forward
pass enforced boundary projection, we apply the transpose of that projection to 1 at the
matching points in the reverse pass.

This gives the PDE (between-payment) part of the gradient. The missing piece is the effect
of the payment updates themselves: at each payment date, cashflows are injected and value can

move between different static levels p;. Those effects, and their adjoint, are handled in Section 4.

4 Differentiating the payment and gradient assembly

At each payment date t,, the contract applies the affine jump (7) with continuation built by the
mixing rule (8) from Section 2. We now compute the sensitivity contribution from that jump
and show how the adjoint propagates across it. The scalar driver s = s(x,t*) is evaluated on
[t tm+1], depends on the diffusive state z (not on the static index ), and is stored nodewise
together with its parameter sensitivities Jgs.

Payment-date contribution to the gradient

At t,,, the forward pass has already produced the post-payment grid
Uy = Cin(8) + Sin(s) Vaext,in(s).

In the adjoint sweep we are at the same time with the adjoint Yin attached to these post-payment
entries. Differentiating the jump with respect to a parameter 6 gives

89ui_,n = [(ascz)n + Vnext,i,n(assi>n + Si,n(asvnext,i)n} (aes)n-

Weighting this nodewise variation by the post-payment adjoint and summing over rows and
nodes yields

oP P—-1N-1
%‘ - Z Z wz_,n [(ascz)n + Vnext,i,n(assi)n + Si,n(asvnext,i)n} (893>n- (19)

tm i=0 n=0

It is helpful to view 1; , as the discrete derivative 9P/du, ,, in which case (21) is the discrete

chain rule: 7
0P _ 5~ 0P Otin
00 Ou; , 00 '

\n




For the linear interpolation in (8), with Q;(s), = gi(sn) and p;;, < Qi(s)n < piy, we have

Qi(8)n — p
Vaextyin = (1 — win) w4+ winuf Wiy = M
Pir — Dig,
and hence . . . X
Uu; C u,; — U
OsVaextim = — 20— 9. Q;(5) = — 2L gl(s,). (20)
Pip = Piy Pig — Pig

If Qi(s)n = pi (no change of static level), then iy, = ip = ¢ and OsVyextin = 0. If Qi(s), lies
outside the tabulated levels, we clamp to the nearest level and take OsVyext,i,n = 0 at that node.

Adjoint propagation across the payment

After adding (21), we must move the adjoint from the post-payment grid to the pre-payment
grid so we can continue over (¢, ty,+1) with the transpose O-scheme. Let U} and U, denote
the pre- and post-payment grids at t,, (with rows u and u, , respectively). We collect the
corresponding adjoints in matrices

)

opP
U’

s0 ¢, = OP/du;, attaches to Uy, and ¢y, = dP/du], attaches to U. We initialise ¥}}, to
zero and accumulate into it by pulling back W through the payment map.
For a node that does not mix across static levels (so Viext,in = u;rn), the jump map is

oP

Vo = {vin} = ‘1’2:{11}}—7

=Cin+S; nuZ 0 hence 8u /8u = S;n and the adjoint pullback is
w:_ Sl n ) n7
i.e. we multiply by S;, because only the surviving part continues past the jump.
If mixing was used, the forward map at (i,n) is u;, = Cin + Sin|(1 — wjn) u;;(m)’n +
wmu;;(z "), .], so the only nonzero Jacobian entries are du, /0uzL (i = Sin(1 —wj,) and
/6um Gy = SimWin. Accordingly, the adjoint is dlstmbuted back to the contributing

pre payment rows by
Q/)it(i,n),n += Si:n(l - wi,n) w;na @Z}fR(i,n),n += Si,nwi,n @Z};n,

accumulating when multiple (i,n) map to the same pre-payment entry. The resulting ¥} is
then marched to t,,11 by the transpose ©@—scheme, while we accumulate the PDE contribution
as in Section 3.

Full gradient assembly

We now collect everything. The total sensitivity of the price P with respect to a parameter 6 is
the sum of

1. the PDE (between-payment) contribution from Section 3, (20), and 2. all payment-date
contributions (21), one for each payment date t,,.

To get both parts we run two sweeps.

Forward sweep (pricing and storage).
1. Set the terminal grid Uy; at maturity tjs from the payoff.
2. Form=M-1,M—-2,...,0:
(a) Roll back from t,,41 to t,,: for each static level p; solve the ©—scheme to get the pre-payment
value ul+ at t,, and store the step matrices A(™ B(™)_ their parameter derivatives, the
driver s and (0ps)n, and any boundary data.



(b) Apply the affine jump at ¢,, to get the post-payment values u; from u*t using C;(s), S;(s),
and the interpolation data (ir,ig,w) that come from @Q;(s), and store these jump objects.
(c) Relabel Uy, < U,,.
3. At tg extract the price
P = prUowx.

Adjoint sweep (sensitivities).

1. At ¢y build the initial adjoint from the price extraction functional. This gives, for each static
level, an adjoint on the x—grid. This is the starting adjoint at ¢y.

2. Form=0,1,...,M — 1:

(a) At the payment date t,, we currently have the adjoint W, attached to the post-payment
grid (this adjoint has just been transported from ¢,,_1 to t,, by the transpose ©—scheme).
With this U, :

i. add the payment-date contribution to the gradient using (21);
ii. propagate the adjoint back through the jump to get the adjoint on the pre-payment
grid, using

wit(i,n),n += Slvn(l - wi,n) 7/);,”7 w;(%n)m += Si,nwi,n 17/}7:7“

(and @b;fn = Sin%;,, in the no-mixing case).
(b) Between t,, and t;,+1: starting from this pre-payment adjoint ¥}, run the transpose
©-scheme forward in calendar time to ¢,,+1, and at the same time accumulate the PDE
part of the gradient by

oprP

0 lpoe T Yonr1 [(06BU™) g1 — (09 AT™) ]

The result of this transpose step is the next post-payment adjoint W, |, ready for the
next payment date.
Because the same adjoint sequence is reused for every parameter 6, all Greeks (with respect
to all model parameters that entered A™), B(™) the driver s, or the jump) are obtained in this
single adjoint sweep.

5 Callable mortgage-backed bond as a special case

A callable mortgage-backed bond (MBB) with scheduled coupons, scheduled principal, and
state-dependent prepayment is obtained by instantiating the generic framework in Sections 2—4.
We keep the same structure: one diffusive state x evolved between payment dates by the
Theta-scheme, one static coordinate (the pool factor) frozen between dates and only updated at
each payment date, and the affine jump

u; = Ci(s) + Si(s) Viext,i(s)

at t,, as in (7), with the continuation Vjext,i(s) constructed by the mixing rule (8). For additional
background on callable mortgage bonds and numerical considerations, see Rom (2025). Between
payment dates, rows (pool-factor levels) are uncoupled and each solves the same one-dimensional
PDE in z; coupling across rows appears only through the jump-time interpolation.

On the interval [t,,, t;,+1] we evaluate, at each spatial node z,,, a scalar driver

Sp = s(xp,tY),

which feeds the prepayment model; s, and its parameter sensitivities are stored in the forward
sweep.
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Let H,, denote outstanding notional just before t,,, Oy, the scheduled principal at ¢,,, and
R,, the interest due at t,,,. The prepayment model delivers, for each pool-factor row ¢ and node
n, a prepayment fraction A, ,; € [0, 1] that depends on s,,. The cash actually paid per unit of
outstanding notional is

)\m,n,i (Hm - Om) + Om + Rm

Ci(s)n = - , (21)
and the redeemed fraction (scheduled + unscheduled) is
Amni (Hpm — O @)
Um ni = m,n,t ( m m) + m ) (22)
1oy Hm
Hence the surviving / amortisation factor that multiplies the continuation is
Amoni (Hpm — O (@)

SZ(S)n — 1 _ Um’nﬂ‘ — 1 _ m,n,t ( m m) + m (23)

H,, ’

which is exactly the S;(s) in (7).

The static coordinate (pool factor) is updated deterministically at the payment. If the
pool factor entering t,, on row i is p;, then after scheduled amortisation and prepayment the
remaining fraction at node n is

Qz(s)n = (1 - )\m,n,i)pi’ (24)

which is the mortgage-specific choice of the updated static level Q;(s) = gi(s). Because Q;(s),
will not in general coincide with one of the discrete levels {p;}, we obtain the continuation by
the same interpolation rule (8): find p;; < Qi(s)n < pi, and set
Qi(s)n — pi
(Vaesta(5)),, = (1= wi) (), + w00 ()0 i = S PiE g <y <1 (25)
piR — Dig,
This interpolation is the only point where different pool-factor rows interact; between payment
dates they remain decoupled.

Optional masking (implementation detail). In the actual implementation we also allow
for an optional nodewise masking of the payment step. If, at a given (i,n), the value is assessed
as below par using some classification rule, we override the prepayment on that node: we set the
prepayment fraction to zero, use only the scheduled cashflow, and skip pool-factor mixing by
taking Viext,i,n = u;,,- The mask is stored together with the jump data (Ci, Si, Vaext,ir 1Ly iRy Win)
and is replayed in the adjoint sweep; masked nodes contribute no jump sensitivity and their
adjoint update is the identity, 1[)?7 n = Vin-
Substituting (23), (25), and (27) into (7) gives, on row i and node n,

Ui, = Ci(s)n + Si(8)n (Vaext,i(s)) (26)

n
which is the usual mortgage payment step: cash today plus surviving continuation on the reduced
pool. Because this is the same affine jump as in Section 4, the adjoint there applies verbatim.
The payment-date gradient uses the post-payment adjoint ¢~ via (21), and the adjoint is then
propagated back across the payment using the stored indices (ir,(i,n),ir(i,n)) and weights w; ,
as in “Adjoint propagation across the payment.”
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Numerical results

The model price at tg is
P = 1.0602570088.

Figure 1 shows the adjoint vegas dP/0o; for 15 piecewise-constant volatility buckets in
the one-factor short-rate model. These match central finite-difference sensitivities to machine
precision across all reported Greeks (every volatility-bucket vega and 9P/0k), with absolute
differences on the order of 10~® for this grid and timestep choice.

0 H D g m = =

= =

volatility bucket [t;,t;41) (years)

Figure 1: Adjoint vegas OP/0o; for the callable MBB use case (one-factor short-rate with bucketed
volatilities).

Quantity Adjoint  Finite difference
P (price) 1.0602570088 —
OP/0k 0.460690 0.460690

Max. abs. diff. across all Greeks <1x10°8 —

Table 1: Accuracy summary for the callable MBB use case: adjoint vs. central finite differences. All
reported risk numbers match to machine precision.

Efficiency comparison (single run for adjoint vs. many bumps for finite differences):

Method Number of solves Total time (s)
Adjoint (all Greeks) 1 3.378
Finite differences (32 bumps) 32 25.228

Table 2: Runtime comparison. Speedup = 25.228/3.378 ~ 7.5x.

In this setup the adjoint produces the full gradient set (all bucket vegas and 0P/0k) in
essentially one pricing-like run, with a measured speedup of about 7.5x relative to a naive
central-difference sweep, while matching bump-and-rerun results to machine precision.
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6 Conclusion

We presented a fully discrete adjoint method for pricing and computing risk sensitivities of path-
dependent contracts with repeated payment jumps. The construction relies on two structural
components.

Between payment dates, each row of the product state evolves independently in the Markov
driver z under a ©—-scheme. This yields banded (tridiagonal in 1D) linear systems and strictly
local storage per substep. Quantities such as the pool factor (or other path dependent quantities)
are carried as a static coordinate: they do not diffuse between dates, so they travel only as a
label and do not increase the PDE state dimension.

At each payment date the contract is advanced by an affine jump

u_ = C(S) —+ S(S) Vnext(5)7

where C(s) is additive, S(s) is a nodewise multiplier, and Vpext(s) is the continuation value that
survives the payment. In path-dependent settings Viext(s) is assembled by linearly mixing rows
of the pre-payment grid according to the updated static level Q(s); this jump kernel is the only
product-specific component and, through its linear structure, provides the Jacobians needed by
the adjoint.

The adjoint method is obtained by differentiating the ©—scheme (Section 3), introducing
an auxiliary sequence 1 that satisfies the transpose recurrence (12), and using that recurrence
to telescope away explicit state variations. As a result, both the between-payment and the
payment-date contributions (Section 4) reduce to sums of quantities already stored on the pricing
sweep, weighted by ¥ marched forward in calendar time. All sensitivities with respect to all
model parameters are produced in a single adjoint sweep; no reruns per parameter are required.
The jump redistribution across static levels is handled exactly via the stored interpolation indices
and weights.

From a computational point of view, if P is the number of static-coordinate levels and N
the number of spatial nodes, each substep in the forward sweep solves one tridiagonal system
per level, for cost O(PN) per substep. The adjoint sweep reuses the same sparsity pattern
with transpose solves of identical complexity. Memory grows linearly with the number of stored
substeps. Crucially, cost is essentially independent of the number of model parameters because
a single pass of ¢ yields all Greeks.

In the callable mortgage-backed bond use case (Section 5)—with scheduled amortisation,
prepayment, and pool-factor mixing via Q;(s) = (1 — A\)p;—all reported adjoint Greeks (bucketed
volatility vegas and the mean-reversion sensitivity) matched central finite-difference results
to machine precision (absolute differences ~ 1078 for the chosen grid/timestepping), while
producing the full gradient set in one run and achieving a speedup of about 7.5x over a naive
bump-and-rerun sweep.

The combination of (i) dimension control via the static coordinate, (ii) a generic affine jump
that encodes cashflow/survival/relabeling rules, and (iii) a discrete adjoint that walks the same
grids and linear systems as pricing, makes the approach directly usable in a production risk
engine: the pricing sweep automatically collects what the adjoint needs, and one adjoint sweep
returns all Greeks—including jump and path-dependence effects—at essentially the cost of a
single valuation run.
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